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Abstract
This study presents a critical review of the Prigogine minimum entropy
production principle. The minimum entropy production implies the stationary
state of the nonequilibrium system and vica versa: the stationary state of
the system implies the minimum entropy production. It was shown that the
extension of the principle to the so-called integral case is devoid of this property
and, therefore, is less interesting in practical and theoretical terms.

PACS number: 05.70.Ln

1. Introduction

Attempts to find some universal function, whose extremum would determine the development
of a system, have been made at all times. A certain success was achieved in optics (Fermat’s
principle) and mechanics (the principle of least action). Entropy has been doomed to be a
quantity describing the progress of nonequilibrium dissipative processes. Great contributions
have been made in this respect by two scientists, namely R Clausius, who introduced the
notion of entropy and advanced the concept of the thermal collapse of the Universe, and
I Prigogine. In 1947 the latter researcher formulated and proved an interesting statement
[1, 2], which nowadays is commonly called the minimum entropy production principle (or
the Prigogine theorem) and then spent a number of years developing and popularizing the
apparatus of nonequilibrium thermodynamics and his principle as applied to description of
various nonequilibrium processes.

This principle1 applies to open linear nonequilibrium systems in the stationary (or
approaching the stationary) state and cases where the assumption on the local equilibrium
holds. The class of such systems is sufficiently wide and, therefore, this principle attracted
(and still attracts) considerable interest. The modern literature cites examples of both the
development of ideas underlying the principle and its interesting applications in hydrodynamics

1 For its rigorous formulation see section 2.
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(e.g. [3]), materials science (e.g. [4]), thermal engineering (e.g. [5, 6]), chemistry (e.g. [7]),
biology and ecology (e.g. [8–10]), etc. The great interest attached to the principle can be
explained by the apparent intuitive simplicity and universality of the proposed statement. This
factor just led (and still leads) to numerous misbelieves on this theorem (see, for example,
[11–17, 20]). As a result, two essentially extreme opinions have been formed in the literature.
Some scientists glorify the principle and think it is capable of describing the majority of
nonequilibrium processes to a certain extent. Other researchers, who observed weak points of
the principle and unceasing efforts by Prigogine and his progeny to generalize it [1, 2, 8, 19],
are very sceptic about the possibility of formulating universal entropy principles, which would
govern so diverse and dissimilar nonequilibrium processes.

We shall review some features of the statement so as to avert its possible misinterpretation
or misuse. The focus will be on the so-called integral generalization of the Prigogine theorem.

2. Local formulation

Prigogine originally formulated his principle precisely in the local form2 [1, 2]. Let us dwell
on it.

Let basic relationships of the linear nonequilibrium thermodynamics be fulfilled a system:

Ji =
∑

k

LikXk, (2.1)

Lik = Lki, (2.2)

where Ji and Xi are thermodynamic flows and forces (the subscript i denotes different flows or
vector components depending on particular conditions), Lik is the matrix of kinetic coefficients
independent of Ji and Xk.

Let us assume also that irreversible forces Xi (i = 1, . . . , j; j < n, n being the number of
forces in the system) are maintained constant and the entropy production in the system is a
minimum.

Then the system is in the stationary state.
The proof of this theorem is sufficiently simple [1, 2]. It is necessary to substitute (2.1)

and (2.2) into the entropy production relation

σ =
∑

i

XiJi (2.3)

and differentiate it with respect to unfixed forces. Since the entropy production is a minimum
under the theorem conditions, the obtained values are zero. However, the obtained expressions
are equal, to within constants, to flows numbered j + 1, . . . , n. Since all other flows in the
system are constant under the problem statement, the system at hand is stationary.

This proof essentially involves only the extreme entropy production. However, because
the entropy production is a positive quadratic function of forces, the entropy production
extremum corresponds precisely to the minimum.

The inverse formulation is considered frequently [18, 19]: in the case of the stationary
nonequilibrium state consistent with external constraints (fixed irreversible forces Xi with i =
1, . . . , j; j < n, n being the number of forces in the system), the entropy production in the
system is a minimum if (2.1) and (2.2) are fulfilled. The proof of this formulation is virtually
analogous to the one adduced above.

2 The local form will imply the formulation both for some sufficiently small element of the substance with the local
equilibrium and for so-called ‘discontinuous systems’ [2].
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Let us briefly discuss the described principle.

(1) The essence of the theorem is that free (unfixed) thermodynamic forces in the system at
hand are mutually adjusted to bring the system to the state with a minimum dissipation.
The adduced proof clearly shows that the theorem has sense if several forces are available
and some of them are fixed. If only one force is present and it is not zero3, the variation used
in the proof vanishes and the speculation about extremalization of the entropy production
in the stationary state is empty and incorrect. In this case, the entropy production is fully
determined by the preset force and the theorem is null and void. The neglect of this
observation and attempts to go beyond the scope of the theorem lead to erroneous results,
which allegedly invalidate the local principle [11, 16, 17]. Let us dwell in more detail
on one of those most known results (see [11]). We have a section of an electric circuit
with parallel connection of conductors (with the resistances R1 and R2) kept at different
temperatures T1 and T2. The voltage at the ends of this section is maintained constant and
equal to U. Obviously, the heat I1

2R1 and I2
2R2 (I1 and I2 being the electric current in the

first and second conductors) is released at each resistance and the entropy production in
this circuit is σ = I 2

1 R1/T1 + I 2
2 R2/T2 [11]. Taking into account that the total current is

constant (I1 + I2 = I = const) at a fixed voltage, it is easy to deduce from the extremum
∂σ/∂I1 = 0 that I1R1/T1 = I2R2/T2. As is known, I1R1 = I2R2 holds when conductors
are connected in parallel. Therefore, the minimum entropy production principle may be
assumed to be erroneous. However, this is exactly the case when one thermodynamic
force U is present in the system and one flow I corresponds to this force. The distribution
of this flow in the system, which is under this force, has nothing to do with the principle
at hand.

(2) It is seen from the proof that the kinetic coefficients should be independent of
thermodynamic forces and flows, but should satisfy the reciprocity relations (2.2). In
the general case, these coefficients obviously may be not constants, but may depend, for
example, on the concentration and the temperature. Let it be emphasized that the principle
is applicable to locally equilibrium systems where a linear dependence is fulfilled between
thermodynamic flows and forces. The last fact does not always mean closeness to the
equilibrium and large gradients are possible in the system (see, for example, [21]).
Probably, the principle also holds for tiny mesoscopic systems where the dynamics is
governed by Fokker–Planck-type equations (see, for example, [22]).

(3) Considering what has been said above, the Prigogine principle in the local formulation is
undoubtedly valid4. It was discussed and generalized by different researchers [23, 24]5

more than once. But a point open to question if the principle is useful and constructive.
A number of researchers are very pessimistic in this respect (see, for example, [11, 26]).
The authors [26] hold to the opinion (which is difficult to object) that the information
needed for the use of this principle must be so complete that the principle adds nothing
new and the direct solution of problems using conservation laws in combination with (2.1)
and (2.2) generally proves to be much simpler than the solution involving the minimum
principle.

3 If the only force is zero, the system will be in the thermodynamic equilibrium and the further discussion is altogether
senseless.
4 The validity of local Prigogine’s principle is questioned in a recent paper [20]. However, the study [20] is incorrect
since the conversion of the formule (8) to (9) and (10) (referred to as in [20]) disregarded that the force X1 should be
fixed as X2 varies.
5 It is also noted in [23] that the Prigogine principle may be viewed as a particular case of the Onsager least dissipation
principle, which was proposed in 1931 (see also [25]).
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(4) The theorem under discussion allows formulating the so-called evolution criterion
meaning that the system will necessarily evolve with time to the stationary nonequilibrium
state starting from any nearest state, while the time derivative of the entropy production
will be negative [18, 19]. So, the role of σ in the system at hand is similar to the role of
thermodynamic potentials in the equilibrium thermodynamics.

3. Integral formulation

In an attempt to extend his principle to a wider class of processes, Prigogine proposed an
additional integral formulation of the minimum entropy production principle. This formulation
is discussed below.

3.1. Different approaches taken by Prigogine to the proof

Prigogine and his followers proved and illustrated the integral principle taking, most frequently,
a simple problem, namely the heat transfer in solids. For this reason, in what follows we shall
also refer to this problem. Let us discuss the problem of the heat transfer in a rod having the
length l. If the Biot–Fourier linear law holds, the total entropy production P in this system
may be written as [2, 18, 19, 27]

P =
∫ l

0
Lqq

(
∂

∂x

1

T

)2

dx, (3.1)

where T is the rod temperature, x is a coordinate, Lqq is the kinetic coefficient related to the
thermal conductivity coefficient λ as Lqq = λT2.

According to Prigogine (see, for example, [19, 27]), the function T(x), which
minimizes (3.1), satisfies the stationary equation for the thermal conductivity

∂2T

∂x2
= 0 or

∂T

∂t
= 0, (3.2)

where t is the time.
The arguments adduced by Prigogine for substantiation of this statement will be given

below. At first glance, the case at hand strongly resembles the theorem proved above: the
minimum entropy production implies a constant heat flow along the rod or, in other words, a
stationary state. It can be seen on the other hand that the proposed formulation considerably
differs from the formulation discussed above. Indeed, the spatial temperature distribution is
determined from the minimum entropy production in the last case and it is stated that this
distribution is stationary. Furthermore, if this formulation is adopted, the system can have
only one thermodynamic force (the temperature gradient) and, correspondingly, one flow.
Still, the statement seems to be constructive. The last observation points most clearly (see
remark 1 in section 2) to differences between the local formulation discussed above and the
present integral formulation.

The above considerations and the impracticability of the rigorous mathematical
development of the integral principle probably were the reasons why in each of his new
papers Prigogine adduced slightly different arguments in support of the integral principle and
its relation to the local theorem of the minimum6. For example, in [2] he placed the integral
principle similar to the principle described above in a separate section under the heading
‘other variational formulations’. In this section he sought for the Lagrangian, the integral

6 As a result, some researchers thought the Prigogine integral principle holds for λ ∼ T−2 [14, 15], while others
referred it to the case of λ ∼ const [12, 13].
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of which should have a minimum in the stable stationary state. Taking the case of thermal
conductivity, he found this Lagrangian and noted in conclusion that if λT2 was assumed to be
constant, the proved statement transformed to the theorem of the minimum entropy increment.
However, since the temperature dependence of the thermal conductivity of the form λ ∼ T−2

was sufficiently specific, the said relation of the principles appeared to be artificial. Therefore,
in his next paper [18], Prigogine attempted relating the two principles more intimately and his
integral formulation already included the weighted entropy production (the entropy production
with some factor). It was emphasized that the phenomenological coefficients (specifically,
the thermal conductivity coefficient) should be constants. So, although the point in question
was the generalization of the local theorem, an absolutely different quantity was actually
introduced, whose minimum determined the temperature distribution. The authors [13] were
right to note that this quantity has another dimensionality and it is quite unclear beforehand
when a nonequilibrium system has the standard minimum entropy production and when the
weighted one. It is also worth noting that in his second attempt aimed at relating the two
statements Prigogine had to assume the invariability of the phenomenological coefficients,
narrowing the applicability of his local statement (see remark 2 in section 2). Admittedly,
Prigogine made the most cogent attempt to relate the two principles in his last paper [19].
Note first that in this paper the author did not mention either a different variational principle
or the generalized formulation. He proved the local formulation of his theorem and then gave
examples of its applicability to individual systems. Out of the five examples cited, only one
example was the integral formulation involving, again, the thermal conductivity problem. We
shall look at this example more closely. Rewrite (3.1) taking into account the relation between
the kinetic coefficient and the thermal conductivity coefficient:

P =
∫ l

0

λ

T 2

(
∂T

∂x

)2

dx. (3.3)

It is assumed that the temperature gradient at the rod ends is sufficiently small and, therefore,

T (x) = Tav(1 + ε(x)), |ε(x)| � 1 (3.4)

is fulfilled. Here Tav is the average temperature of the rod.
Considering (3.4) and using the traditional assumption on the invariability of the thermal

conductivity coefficient, the expression (3.3) can be roughly transformed to

P ≈ λ

T 2
av

∫ l

0

(
∂T

∂x

)2

dx. (3.5)

Extremalization of (3.5) using the Euler–Lagrange equation obviously leads to the
expression (3.2). So, Prigogine demonstrated that the stationary distribution of the temperature
followed from the entropy production extremalization. The basic assumption (3.4) does
not look, on the face of it, too strong and unnatural, because the linear nonequilibrium
thermodynamics (all the statements were made just in terms of this science) is valid exactly at
small thermodynamic forces (specifically, low temperature gradients).

Despite the above proof, some dissatisfaction is felt. Indeed, in most rigorous terms,
the linear relationship between the flow and the force can be fulfilled in each element of
the volume (for the thermal conductivity this assumption holds almost in all cases), but the
difference of temperatures on boundaries of the whole volume can be very large. Therefore,
the low temperature gradient (and, also, the invariable λ) at the rod ends essentially is an
additional assumption, which is absent in the local theorem. It is not proved for the integral
case either that exactly the minimum entropy production, rather than the extremum, provides



376 L M Martyushev et al

the stationary distribution7. The inverse proposition is also open to question: if the stationary
nonequilibrium state has the minimum entropy production. In this connection, in the following
section we shall look once more into the validity of the integral minimum principle.

3.2. Is the integral principle fulfilled or not? Generalized consideration

Considering the recent interest aroused in the applicability of the minimum principle at the
power dependence of the thermal conductivity coefficient on the temperature [14, 15], we
shall assume

λ = λ0T
n, (3.6)

where λ0 is a temperature-independent coefficient and n is an arbitrary number. By setting n
equal to 0 or – 2, we can analyse the two approximations used by Prigogine.

We shall consider, as before, the thermal conductivity in the rod. The mathematical
statement of the problem is as follows:

∂T

∂t
= a

∂

∂x

(
T n ∂T

∂x

)
. (3.7)

The boundary conditions

T (0, t) = T0 and T (l, t) = γ T0. (3.8)

The initial condition

T (x, 0) = ξ(x). (3.9)

It is assumed here that the temperature at the ends of the rod differs γ times. We shall
take for certainty that γ is not less than unity. The quantity ξ (x) is the initial distribution
of the temperature along the rod. It is assumed in (3.7) for simplicity that the heat capacity,
the density and λ0 are constant and, therefore, these quantities may be removed from the
derivative. Hence, the thermal diffusivity a (involving λ0) is a constant.

If the temperature and the coordinates are scaled as T0 and l, and the time is scaled as
l2

/
T n

0 a, then (3.7)–(3.9) can be brought to the dimensionless form:

∂θ

∂τ
= ∂

∂χ

(
θn ∂θ

∂χ

)
, (3.10)

θ(0, τ ) = 1, θ(1, τ ) = γ, (3.11)

θ(χ, 0) = ψ(χ), (3.12)

where θ, χ and τ denote the dimensionless temperature, coordinate and time, respectively,
while ψ(χ, 0) is the dimensionless initial distribution of the temperature correlating
with (3.11).

For the problem at hand, the dimensionless entropy production � is written in the form

� =
∫ 1

0
θn−2

(
∂θ

∂χ

)2

dχ. (3.13)

The Euler–Lagrange equation, which extremalizes the entropy production (3.13), has the form

(n − 2)

(
∂θ

∂χ

)2

+ 2θ
∂2θ

∂χ2
= 0. (3.14)

7 The relationship ∂P/∂t � 0 (i.e. a perturbed system tends to a state with the minimum entropy production and this
state is stable) was proved, for example, in [27], but the approximation (3.4) was decisive for the proof there.
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If (3.14) is solved considering (3.11), we have

θvar = [(γ n/2 − 1)χ + 1]2/n, n �= 0; (3.15)

θvar = γ χ , n = 0. (3.16)

Since the second derivative of the integration element in (3.13) with respect to ∂θ/∂χ is always
positive, then, in accordance with the Legendre condition, the obtained extremum is just the
minimum.

Let us compare the result of (3.15)–(3.16) with the stationary solution of (3.10)–(3.11),
which has the form

θst = [(γ n+1 − 1)χ + 1]1/(n+1) if n �= −1; (3.17)

θst = γ χ if n= − 1. (3.18)

It is seen from these formulae that the field of temperatures obtained by extremalization of the
entropy production (3.13) and the field deduced from the solution of the stationary equation
for the thermal conductivity are different in the general case. They coincide in two cases only:

(1) at any temperature gradient at the rod ends if n = −2,
(2) if the temperature gradient at the rod ends is very low (γ approaches unity) and n = 0.

Indeed, if (3.16) is expanded into a series to a linear term, we have

θvar ≈ 1 + (γ − 1)χ, (3.19)

which coincides with (3.17) in the adopted approximation.

The obtained results generally support the conclusions under p 3.1 (see also [12–15]).
A question arises as to the existence of the inverse statement8, that is, if the stationary field

of temperatures provides, at least roughly, the minimum entropy production. To verify this
supposition, we shall assume that the stationary distribution of the temperature was disturbed
by some small perturbation �(χ, τ) (the temperature at the rod ends remains unchanged:
�(0, τ ) = �(1, τ ) = 0 and �(χ, 0) = δ(χ) (δ(χ) being some function, δ(0) = δ(1) = 0).
Obviously, the temperature will re-approach with time the stationary value in accordance with
the equations (3.10)–(3.12). We shall take a sufficiently long time (τ → ∞). In this case, the
nonstationary field of temperatures can be presented as the sum of the stationary solution and
a small exponentially decreasing addition9:

θ(χ, τ ) = θst(χ) + �(χ, τ) = θst(χ) + δ(χ) e−µτ , (3.20)

where �(χ, τ) � θst(χ) and µ is some positive constant.
Will the entropy production �p in the state at hand be larger or smaller than the entropy

production �st in the stationary nonequilibrium state? If it proves to be always larger, the
stationary state is characterized exactly by the minimum entropy production. Let us make
some calculations10:

�p − �st =
∫ 1

0

[
(θst + �)n−2

(
∂θst

∂χ
+

∂�

∂χ

)2

− θn−2
st

(
∂θst

∂χ

)2
]

dχ. (3.21)

8 Let us recall that both the direct and inverse statements are valid in the local case.
9 It is easy to show that this type of the addition satisfies equations (3.10)–(3.12) at any n with the assumptions
adopted (if n �= 0, it is required that ∂�/∂χ � ∂θst/∂χ and ∂2�/∂χ2 � ∂2θst/∂χ2. This is fulfilled near the
stationary state).
10 In a general case, the extremum (3.13) is sought over a wide class of functions. In what follows we shall only
compare values of the functionals at temperatures equal to θst and (3.20). Of course, these problems are nonequivalent.
If it proves however that even with this particular choice of functions the functional of the nonstationary distribution is
smaller than the functional of the stationary distribution of the temperature, then this example will suffice to disprove
the statement that the stationary state has the minimum entropy production.
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Considering the smallness of � at a long time and limiting ourselves to the terms proportional
to e−µτ , the last expression can be transformed to

�p − �st =
∫ 1

0

[
2θn−2

st
∂θst

∂χ

∂�

∂χ
+ θn−3

st (n − 2)�

(
∂θst

∂χ

)2
]

dχ. (3.22)

Integrating the first term by parts and considering that the temperature at the rod ends is
invariable, we have

�p − �st =
∫ 1

0

[
(2 − n)θn−3

st

(
∂θst

∂χ

)2

− 2θn−2
st

∂2θst

∂χ2

]
�(χ, τ) dχ. (3.23)

Using (3.17) and (3.18), the last expression can be brought to the form

�p − �st = (2 + n)(γ n+1 − 1)2

(n + 1)2

∫ 1

0

[
((γ n+1 − 1)χ + 1)−

n+3
n+1

]
�(χ, τ) dχ (3.24)

if n �= −1, and

�p − �st = (ln γ )2
∫ 1

0
γ −2χ�(χ, τ) dχ (3.25)

if n = −1.
It may be inferred from (3.24) and (3.25) that at n �= −2 the difference of the entropy

production between the stationary case and an adjacent perturbed case is negative or positive
depending on the sign of the spatial temperature perturbation (±|δ(χ)|). Thus, depending on
the initial perturbation of the temperature, the entropy production may be either maximum or
minimum in the stationary state in comparison to nearest states formed after the perturbation
relaxation11.

If n = −2, the consideration of linear terms e−µτ only, when (3.21) is transformed
to (3.22), leads to the zero value of �p − �st. Using (3.21), write the quadratic contribution

�p − �st =
∫ 1

0
θ−4

st

[(
∂�

∂χ

)2

− 8�

θst

∂θst

∂χ

∂�

∂χ
+

10�2

θ2
st

(
∂θst

∂χ

)2
]

dχ.

Substituting the explicit form of the stationary temperature distribution (3.17) at n = −2 into
the last expression, we have

�p − �st =
∫ 1

0
[(γ −1 − 1)χ + 1]4

[ (
∂�

∂χ
+ 4�

(γ −1 − 1)

[(γ −1 − 1)χ + 1]

)2

− 6�2(γ −1 − 1)2

[(γ −1 − 1)χ + 1]2

]
dχ.

It can be shown that the minimum value of the last functional for the class of smooth functions
�, which satisfy the boundary conditions �(0, τ ) = �(1, τ ) = 0, is zero12. One can
conclude therefore that at n = −2 the entropy production in the stationary state is minimum
for the functions of the form (3.20). Remarkably, the case of n = −2 was mentioned by
Prigogine in one of his proofs of the integral principle (see above)13. The following point must
be emphasized here. If one considers the adopted constraints, calculations do not provide
complete evidence that the stationary temperature distribution corresponds to the minimum

11 Specifically, numerical calculations [14] gave the maximum entropy production at the initial temperature distribution
of 1 (dimensionless units) along the full length of the sample.
12 This follows from the solution of the Euler–Lagrange equation.
13 At n = −2 the minimum in the stationary state was obtained from numerical calculations of the entropy production
in [14] and analytically in [15].
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entropy production. It was shown only that the entropy production is smaller in the one-
dimensional stationary state than in the case of the temperature distribution tending with time
exponentially to the stationary distribution.

So, on the strength of the calculations made, it may be stated that the stationary temperature
field can be obtained from the minimum entropy production only with two temperature
dependences of the thermal conductivity coefficient (n = −2 and 0, see (3.6)). In the second
case, which is most significant for practical applications, this can be done only roughly
on the assumption of a low temperature gradient at the rod ends. The inverse statement is
incorrect14: in the stationary state the entropy production may be either minimum or maximum
as compared to the entropy production calculated for other physically possible distributions
of the temperature over the rod.

4. Conclusion

The analysis showed that the local minimum principle formulated by Prigogine is correct. The
following points, which are often misleading, must be emphasized.

(1) The principle may be used if two or more thermodynamic forces, some of which are
invariable, are available.

(2) The kinetic coefficients should not depend on flows and forces, but they may depend on
thermodynamic parameters (e.g., the temperature).

(3) The minimum entropy production implies the stationary state of the system and vice
versa: the stationary state of the system implies the minimum entropy production.

Attempts to extend the local principle to the so-called integral event are unreasonable
and, as a matter of fact, erroneous. Even if additional constraints are introduced as compared
to the local formulation (on the relationship between the thermal conductivity coefficient and
the temperature, the smallness of the temperature gradient on boundaries of the system under
study), the principle proves to be invalid in both directions, probably except the case when the
thermal conductivity coefficient is inversely proportional to the squared temperature.
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